PENERAPAN METODE K-NEAREST NEIGHBOR DAN GINI INDEX PADA KLASIFIKASI KINERJA SISWA
نویسندگان
چکیده
منابع مشابه
Klasifikasi Data Cardiotocography Dengan Integrasi Metode Neural Network Dan Particle Swarm Optimization
Backpropagation (BP) adalah sebuah metode yang digunakan dalam training Neural Network (NN) untuk menentukan parameter bobot yang sesuai. Proses penentuan parameter bobot dengan menggunakan metode backpropagation sangat dipengaruhi oleh pemilihan nilai learning rate (LR)-nya. Penggunaan nilai learning rate yang kurang optimal berdampak pada waktu komputasi yang lama atau akurasi klasifikasi yan...
متن کاملAir Quality Index Prediction using K-Nearest Neighbor Technique
One of the classical data mining techniques is k-nearest neighbor. This method uses the class of the k nearest neighbor to classify a new instance. The distance is calculated with one of the multiple mathematical distance metrics. In this paper, the technique is used in the air quality forecast domain in order to predict the value of the air quality index. This index is used to categorize the p...
متن کاملEfficient Reverse k Nearest Neighbor evaluation for hierarchical index
“Reverse Nearest Neighbor” query finds applications in decision support systems, profile-based marketing, emergency services etc. In this paper, we point out a few flaws in the branch and bound algorithms proposed earlier for computing monochromatic RkNN queries over data points stored in hierarchical index. We give suitable counter examples to validate our claims and propose a correct algorith...
متن کاملDrought Monitoring and Prediction using K-Nearest Neighbor Algorithm
Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), usin...
متن کاملFast Approximate Nearest-Neighbor Search with k-Nearest Neighbor Graph
We introduce a new nearest neighbor search algorithm. The algorithm builds a nearest neighbor graph in an offline phase and when queried with a new point, performs hill-climbing starting from a randomly sampled node of the graph. We provide theoretical guarantees for the accuracy and the computational complexity and empirically show the effectiveness of this algorithm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal Techno Nusa Mandiri
سال: 2019
ISSN: 2527-676X,1978-2136
DOI: 10.33480/techno.v16i2.747